
Python Lists

CS 8: Introduction to Computer Science
Lecture #8

Ziad Matni

Dept. of Computer Science, UCSB

Administrative
•  Midterm is graded!

–  Grades are online

•  Don’t forget your TAs’ and Instructor’s office hours!! JJ

5/4/17 Matni, CS16, Sp17 2

Midterm #1 Results

5/4/17 Matni, CS16, Sp17 3

Average	
 81.4	

Median	
 86	

Std. Dev.	
 16.5	

Min	
 30	

Max	
 103	

5/4/17 Matni, CS16, Sp17 4

Sequential Data Types

•  Data types that are made up of other data types

•  Example:
 Strings are made up of character elements

•  Strings are immutable
–  You can’t exchange a character in strings by simple assignment

–  Example:
Let’s say, s = ‘book’, you cannot issue s[3] = ‘m’ and expect
the string s = ‘boom’
(it won’t work that way, you’d have to do other manipulation)

5/4/17 Matni, CS16, Sp17 5

Starting chapter 4

Lists – More Versatile Sequences

•  Lists are another sequential data type

•  But unlike strings, lists …
– can hold any type of data (not just characters)
– are mutable – legal to change list elements

5/4/17 Matni, CS16, Sp17 6

Lists – More Versatile Sequences

•  Use square brackets, [] to define a list
fruit = [‘apple’, ‘pear’, ‘orange’, ‘lemon’]

•  And use [] to access elements too
fruit[2] >>> ‘orange’

–  Indexing works the same as strings
•  i.e. start with [0]

–  Index slicing works the same as with strings too
•  E.g. fruit[1:] = [‘pear’, ‘orange’, ‘lemon’]
•  E.g. fruit[:1] = [‘apple’, ‘pear’]

5/4/17 Matni, CS16, Sp17 7

List Examples
>>> li = [‘abcd’, 2, 3, ‘efg’, True, 7]
>>> li
[‘abcd’, 2, 3, ‘efg’, True, 7]

>>> li[0]
‘abcd’

>>> li[1] - li[2]
-1

>>> li[1] + li[0]
TypeError: cannot concatenate 'str' and 'int' objects

5/4/17 Matni, CS16, Sp17 8

DEMO!
Let’s try it!

Note: mixed data types
can be placed inside 1 list

Other Built-In List Functions
See table 4.2 in textbook: all used as listname.function()

•  append
•  insert
•  pop
•  sort
•  reverse
•  index
•  count
•  remove

5/4/17 Matni, CS16, Sp17 9

DEMO!
Let’s try it!

Other Operations Involving Lists

•  Built-in functions like len (same as strings)
–  Use max and min for extremes (work for strings too)
–  And sum (only if all elements are number types)

•  Test membership in lists,
just like you can with strings: in, not in

5/4/17 Matni, CS16, Sp17 10

More Operations Involving Lists

•  But unlike strings, can use built-in del operator:
fruit >>> ['apple', 'pear', 'orange']
del fruit[1]

fruit >>> ['apple', 'orange']

•  Also can use [] with = to change elements too
(can’t do that with strings…)
fruit[0] = 'tangerine'

fruit >>> ['tangerine', 'orange']

5/4/17 Matni, CS16, Sp17 11

List Operations: + and *

•  + concatentates (but both operands must be lists)
nums = [20, -92, 4]

nums + 9 >>> TypeError
nums + [9] >>> [20, -92, 4, 9]

•  * repeats (one operand is a list, other is an int)
nums * [2] >>> TypeError
nums * 2 >>> [20, -92, 4, 20, -92, 4]

•  Note: can make a list of lists, but still just 1 nums
[nums] * 2 >>> [[20, -92, 4], [20, -92, 4]]
–  Explained next slide

5/4/17 Matni, CS16, Sp17 12

Actually, Lists Hold References

•  Look at prior example a different way to see this
[nums, nums] == [nums] * 2 >>> True

•  Now give a name for the list of list references
numList = [nums, nums]

numList >>> [[20, -92, 4], [20, -92, 4]]

5/4/17 Matni, CS16, Sp17 13

Actually, Lists Hold References

•  Delete an item from original list – see result!
del(nums[0])

numList >>> [[-92, 4], [-92, 4]]

•  WHY ARE ALL OF AFFECTED?!?!?!

•  Look at p. 124 in textbook (especially Fig. 4.4)

5/4/17 Matni, CS16, Sp17 14

Finding extreme values

•  Usually able to use built-in functions max, min
–  But what if we didn’’t have such functions?
–  Or what if they don’’t fit our problem (e.g. max odd)?

•  Basic algorithm applies to any extreme
Store value (or index) of first list item

Loop through remaining items:

 If current more extreme than stored item:

 Replace stored extreme item (or index)

–  Assumes there is at least one item in the list

5/4/17 Matni, CS16, Sp17 15

Find-the-Maximum Algorithm
1. Store value of first list item
2. Loop through remaining items:
 If current item > than stored item:
 Replace stored extreme item

def getMax(alist):
 maxSoFar = alist[0]
 for item in alist:
 if item > maxSoFar:
 maxSoFar = item

return maxSoFar

5/4/17 Matni, CS16, Sp17 16

Calculating Means and Medians

•  Mean (Average) = (max – min) / sum

•  Median (middle item) is more complex…

 sort it first and then find the middle value…

If there’s an even number of entities…

5/4/17 Matni, CS16, Sp17 17

1 5 2 10 8 7 7 6 3

1 2 3 5 6 7 7 8 10

1 2 3 5 6 7 7 8 Median = 5.5

Median = 6

“Find the Median” Algorithm
1.  Sort the list first
2.  Determine the length of the list
3.  Find the middle of the list (length/2)

1.  If the length is an odd number, then there’s only 1
middle

2.  If the length is an even number, then identify the
middle 2 and get their average

5/4/17 Matni, CS16, Sp17 18

“Find the Median” Function
def median(alist):
Make a copy so we won't change "alist" itself

copylist = alist
copylist.sort()

if len(copylist)%2 == 0: # if length of list is even
rightmid = len(copylist)//2
leftmid = rightmid - 1
median = (copylist[leftmid] + copylist[rightmid])/2

else: # if length of list is odd
mid = len(copylist)//2
median = copylist[mid]

return median

5/4/17 Matni, CS16, Sp17 19

YOUR TO-DOs

q  Finish reading Chapter 4

q  Finish Homework4 (due Thursday 5/4)
q  Begin Lab4
q  Keep working on Project1 (due Friday 5/12)

q  Wash your hands

5/4/17 Matni, CS16, Sp17 20

