Strings in Python 1 Midterm\#1 Exam Review

CS 8: Introduction to Computer Science
Lecture \#6

Ziad Matni
Dept. of Computer Science, UCSB

Administrative

- Turn in Homework \#2 today
- Homework \#3 is assigned and due next Thursday
- Lab \#2 is due on Friday
- Your grades are now online!

Access them through the class website and click on "Class Grades, CMPSC 8, Spring 2017"

- Don't forget your TAs' and Instructor's office hours!! ;)

MIDTERM IS COMING!

- Material: Everything we've done, incl. up to Th. 4/20
- Homework, Labs, Lectures, Textbook
- Tuesday, $\mathbf{4 / 2 5}$ in this classroom
- Starts at 3:30pm **SHARP**
- Pre-assigned seating
- Duration: 1 hour long

- Closed book: no calculators, no phones, no computers
- Only 1 sheet (single-sided) of written notes
- Must be no bigger than 8.5 " $\times 11 "$
- You have to turn it in with the exam
- You will write your answers on the exam sheet itself.

Bring your UCSB IDS to the eramill eram!!!

Study Session with a TA!!

- TA Sourav Medya (medya@cs.ucsb.edu) will lead a review session for anyone interested
- Friday, April 21 ${ }^{\text {st }}$ from 1:00-2:00 PM
- In PSYCH 1924

What's on the Midterm\#1? All Lecture Materials, Including...

- What is CS? What are computers? Brief history
- What is programming? How does abstraction fit in?
- Numbers and Arithmetic in Python
- Variables in Python
- Modules in Python including turtle
- Loops using for
- Different uses of range
- Implementing accumulations
- Conditional statements using if/elif/else
- Boolean Logic
- Random Number Generation
- Functions - how to define them, how to call them
- Strings in Python

What's on the Midterm\#1? Textbook Readings

- Ch. 1 (all)
- Intro to Python
- Ch. 2 (all)
- Finding Pi:
a context to learn/use loops, functions, random numbers
- Ch. 3 (sections 3.1 and 3.2)
- Strings and their manipulations

What's on the Midterm\#1? Homework and Labs

- Review them and understand what you did
- The lab processes and experiences, especially

Sample Question Multiple Choice

What is the answer to this operation: $1+3 j^{* *} 2$?
A. $1+9 \mathrm{j}$
B. -9
C. $-9+0 \mathrm{j}$
D. -8
E. $-8+0 \mathrm{j}$

Sample Question Multiple Choice

What is exactly printed by this code?

$$
\begin{aligned}
& \text { for } z \text { in range(3, 5, 1): } \\
& \quad \operatorname{print}\left(z^{*} z\right)
\end{aligned}
$$

A. 3, 5, 1 on separate lines
B. 9,16 on separate lines
C. $9,16,25$ on separate lines
D. 3,5 on separate lines
E. None of the above

Sample Question Short Answer

Write Python code that does the following: if the value of a variable, \mathbf{v}, is less than 5 , you will print out "UCSB" v times. Otherwise you will print out "Gaucho" once.
if v<5:
for j in range(v): print "UCSB"
else:
print "Gaucho"

Strings

- Chapter 3's problem context is cryptography, but mostly it is about strings and related ideas
- Strings are basically sequences of characters
- A string literal is enclosed in quotes (' ' or "" in Python): 'hello' == "hello" >>> True

Strings

- Actually objects of a Python class named str
type('kitty') >>> <class 'str'>
- Can assign names like any other type of object

$$
\begin{aligned}
& \text { message }=\text { "Don't be late!" } \\
& \text { print(message) >>> Don't be late! }
\end{aligned}
$$

- Lots of built-in functions work for string objects, and class str has useful operators and methods too

Operations on Strings

- Concatenation
- Merging multiple strings into 1
- Use the + operator
- "say my" + " "+ "name" = "say my name"
- Repetition
- Easy way to multiply the contents of a string
- Use the * operator
-"ja" * 3 = "ja ja ja"

Indexing

- Every character in a string has an index associated with it

0	1	2	3	4	5	6	7	8
\mathbf{y}	\mathbf{o}		\mathbf{m}	\mathbf{a}	\mathbf{m}	\mathbf{a}	,	\mathbf{s}

- In Python, indexing always starts at 0 .
- So the $1^{\text {st }}$ character in the string is character $\# 0$
- Indexing is called out with square brackets [n]
- If name = "Jimbo Jones", then:

$$
\begin{aligned}
& \text { name }[0]=\text { "J" } \\
& \text { name }[4]=\text { "0" } \\
& \text { name }[5]=\text { " " } \\
& \text { name }[15] \text { is undefined (error) }
\end{aligned}
$$

(Fun)ctions for Strings

- Length of string: len(string)
- Example: len("Gaucho") = 6
- Slice a string into a smaller string: [i:j]
- Where $i=$ starting index, $j=$ ending index
- Example: "Gaucho"[2:4] = "uc"
- Combinations are possible!
- Example:
$((" 0 "+$ "Gaucho"[2:5] + " ") * 3) + "!"

More (Fun)ctions!

- Boolean operators in and not in to check if a sub-string is found inside a longer string

Examples:

- "fun" in "functions" = True
- "fun" in "Functions" = False
- "Fan" not in "Functions" = True

String Methods

See Table 3.2 in textbook
Assume: name = ‘Bubba’

- name.center (9) = ' Bubba $\quad \leqslant$ centers w/spaces on each side
- name.count('b') = $2 \leqslant$ counts how many times 'b' occurs
- name.count('ubb’) = 1
- name.ljust(9) = 'Bubba $\quad<$ left justifies name in 9 spaces
- name.rjust(9) = ' Bubba’ <right justifies name in 9 spaces
- name.upper () = 'BUBBA' \leqslant all uppercase letters
- name.lower() = 'bubba’ \leftarrow all lowercase letters
- name.index('bb’) = 2
- name.find('bb') = 2
- name.find('z') = -1
\leftarrow Index of first occurrence of first letter
\leftarrow Index of first occurrence of first letter if not found, then returns -1
- name.replace('bb', 'dd’) = 'Budda’

Example

Assume string $\mathbf{s}=$

What is:

- s.find(' m ') $=18$
- $\operatorname{s.find}\left({ }^{\prime} r\right.$ ' $)=9$
- $\operatorname{s.find}\left({ }^{\prime} o w '\right)=1$
- $\operatorname{s.find}\left({ }^{\prime} s\right.$ ') $=-1$
- s.replace(' meow', 'moo?') = "how now brown cowmoo?!"
\leftarrow note: one space before meow

Functions chr(n) and ord(c)

- Characters are stored as numbers in memory
- There are standard codes for characters, e.g. ASCII codes, UTF-8, etc...
- For example, 'A' has code 65 in ASCII
- Use ord function to verify: ord('A') >>> 65
- Notice 'A' is not same as 'a': ord('a') >>> 97
- Every character, seen (e.g. \%, !, G, =, ...) and unseen (e.g. CONTROL-X, newline...) has ASCII code

Functions chr(n) and ord(c)

- Likewise, you can find character associated with a particular code using chr function

$$
\operatorname{chr}(65) \text { >>> 'A' }
$$

- Can manipulate numbers to process characters

```
chr( ord('a') + 3) >>> 'd'
```

- Notice digit characters have codes too!

$$
\text { ord('6') >>> } 54
$$

Examples

- How can I find out what's 13 letters after 'e'??
$-\operatorname{chr}\left(\operatorname{ord}\left({ }^{\prime} \mathrm{e}^{\prime}\right)+13\right.$)
- How can I "add"' ' 3 ' and ' 4 ' and get ' 7 '??
- First ask: how can I make ' 3 ' into 3 ? HINT: We need a baseline!
- $\operatorname{ord}\left({ }^{\prime} 3^{\prime}\right)-\operatorname{ord}\left({ }^{\prime} \mathbf{0}\right.$ ') $=3$
- So the "addition" is done like this:

$$
\begin{aligned}
& \operatorname{ord}\left({ }^{\prime} 3^{\prime}\right)-\operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)+\operatorname{ord}\left({ }^{‘} 4^{\prime}\right)-\operatorname{ord}\left({ }^{‘} 0^{\prime}\right)=7 \\
& \left.\operatorname{or}, \underline{\operatorname{ord}\left({ }^{\prime} 3\right.}\right)+\operatorname{ord}\left({ }^{\prime} 4^{\prime}\right)-2^{*} \operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)=7
\end{aligned}
$$

Then:
$\operatorname{chr}\left(\operatorname{ord}\left({ }^{\prime} 3^{\prime}\right)+\operatorname{ord}\left({ }^{6} 4^{\prime}\right)-2^{*} \operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)+\operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)\right)={ }^{\prime} 7$ '

So I Can Create a Function to do This!

def addChars(char1, char2):
numAddASCII $=\operatorname{ord}(c h a r 1)+\operatorname{ord}(c h a r 2)-\operatorname{ord}(' 0$ ')
charNum $=$ chr(numAddASCII)
return charNum

Important Caveat!

Only works with 1 character numbers!

YOUR TO-DOs

\square Finish reading Chapter 3 for Thursday's class
\square Finish Homework3 (due Thursday 4/27)
\square Finish Lab2 (due Friday 4/21)
\square Study for Midterm \#1!!!!

- Remember the study session: Fri. 4/21@ 1pm in PSYCH 1924

Come see the prof. or the TAs during office hours
if you have questions
\square Run through an open meadow

</LECTURE>

